

Mathematics Specialist Unit 1&2 Test 3 2018

Calculator Assumed **Proof**

STUDENT'S NAME

DATE: Thursday 17 May

TIME: 20 minutes

MARKS: 20

INSTRUCTIONS:

Standard Items: Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (1 mark)

Consider the following statement:

All prime numbers when squared are odd.

Provide a counter example that shows this statement is false.

Determine, with reasons, that value of each unknown

[4]

3. (5 marks)

Prove the Alternate Segment Theorem

i.e. for the circle below, centre O, prove $\angle CAY = \angle ABC$

4. (6 marks)

Two sides of the cyclic quadrilateral BCDE are extended to meet at A, as shown in the diagram.

(a) Prove that triangles *ADC* and *ABE* are similar.

[3]

(b) If AB = 15, BC = 21, AE = 12 and BE = 6 cm, determine the lengths of DE and CD.

[3]

Mathematics Specialist Unit 1&2 Test 3 2018

Calculator Assumed **Proof**

STUDENT'S NAME

DATE: Thursday 17 May

TIME: 30 minutes

MARKS: 30

INSTRUCTIONS:

Standard Items:Pens, pencils, drawing templates, eraserSpecial Items:Three calculators, notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

5. (6 marks)

Write each of the following mathematical statement in words:

(a) for all
$$x \exists y$$
 such that $y < x$ [2]

(b)
$$x^3 = y^3 \Longrightarrow x = y$$
 [1]

- (c) for the above statement in part (b);
 - (i) Write down the converse of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]
 - (ii) Amend the statement in part (b) using an equivalence statement. [1]

6. (7 marks)

Consider the following statement:

If you draw any nine playing cards from a standard deck, then you will have at least three cards all of the same suit.

(a) Prove this statement.

[3]

(b) Write down the contrapositive of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

(c) Write down the inverse of this statement and state whether it is true or false, and if it is false, provide a counter-example. [2]

7. (6 marks)

The points J, K, M and N are points on the circumference of the circle centre O, shown below.

Let $\angle JON = \beta$ and $\angle KLM = \theta$

The length KL is equal to the radius of the circle.

Prove that $\beta = 3\theta$

8. (4 marks)

Consider the diagram with the following information:

BD bisects $\angle ABC$ $\angle ADB$ is acute

Prove, by contraction, that $AB \neq BC$

9. (7 marks)

If MK and ML are tangents to the circle and $KN \parallel QL$, prove that MKLP is a cyclic quadrilateral.

